## Stereoselective synthesis of 2,4,5-trisubstituted piperidines by carbonyl ene and Prins cyclisations

Claire A. M. Cariou and John S. Snaith\*

Received 1st November 2005, Accepted 15th November 2005 First published as an Advance Article on the web 29th November 2005 DOI: 10.1039/b515547a

Cyclisation of aldehydes 3a-e catalysed by concentrated hydrochloric acid affords predominantly the all *cis* 2,4,5trisubstituted piperidines 4a-e when the 2-substituent is small, while catalysis by MeAlCl<sub>2</sub> in refluxing chloroform gives the *trans* piperidines 5a-e with diastereomeric ratios of up to 99 : 1.

Piperidines are widely distributed throughout Nature<sup>1</sup> and are an important scaffold for drug discovery,<sup>2</sup> forming the core of many pharmaceuticals. Methods for their stereocontrolled synthesis are of continuing interest, driven by the wide variety of functionality and substitution patterns present in piperidine targets.<sup>3</sup>

Intramolecular carbonyl ene reactions present an attractive method for ring closure, leading to the formation of two contiguous stereocentres with an often high degree of stereocontrol.<sup>4</sup> We recently published a route to 3,4-disubstituted piperidines which had a carbonyl ene reaction as the key ring-closing step.<sup>5</sup> The Brønsted acid-catalysed reaction at low temperatures strongly favoured a *cis* relationship between the two new stereocentres, while the Lewis acid-catalysed reaction at elevated temperatures gave the corresponding *trans* product.

We now describe our efforts towards extending this approach to the synthesis of 2,4,5-trisubstituted piperidines, using cyclisation precursors derived from  $\alpha$ -amino alcohols. Such trisubstituted piperidines are of particular interest as they form the core of a number of important natural products, including the pseudodistomin family of anti-tumour compounds. These were isolated by Kobayashi<sup>6</sup> from a marine tunicate, and have recently been the focus of synthetic attention.<sup>7</sup>

The cyclisation precursors were readily synthesised from commercially available  $\alpha$ -amino alcohols *via* a procedure involving a one-carbon homologation by cyanide, Scheme 1. Bis tosylation of the  $\alpha$ -amino alcohols **1a**–**e** followed by displacement of the *O*-tosyl group by sodium cyanide in DMF proceeded smoothly



School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, UK B15 2TT. E-mail: j.s.snaith@bham.ac.uk; Fax: +44 121 414 4403; Tel: +44 121 414 4363

and in good yield to afford the *N*-tosyl- $\beta$ -amino nitriles **2a**–e. These were alkylated with prenyl bromide before being reduced by Dibal-H to the  $\beta$ -amino aldehyde cyclisation precursors **3a**–e in excellent overall yield. The  $\beta$ -amino aldehydes could be readily chromatographed and were unchanged on storing for several weeks at -20 °C.

Cyclisation of **3a–e** was first studied using our optimised Brønsted acid conditions† of three equivalents of concentrated hydrochloric acid in  $CH_2Cl_2$  at -78 °C.<sup>5</sup> In our earlier work, these conditions were found to favour formation of the kinetic product, in which there is a *cis* relationship between the hydroxyl and isopropenyl substituents. The results are summarised in Table 1.

In all cases, of the four possible stereoisomers, only two, piperidines **4** and **5**, were observed, in excellent combined yields. In the case of  $\beta$ -amino aldehydes with sterically undemanding 2-substituents, entries 1–3, the diastereoselectivity was moderate to good, although it decreased markedly in the case of **3d** and **3e** with very bulky 2-substituents. Traces (typically <5%) of chloride side-products were often isolated, arising from the addition of HCl across the double bond in **4** or **5**. These were generally separable by chromatography, but could also be converted back to the alkenes **4** and **5** by stirring with aqueous ammonia in THF.

The major diastereomer was confirmed as the all *cis* piperidine **4** by single crystal X-ray analysis of **4c**, Fig. 1.‡ Formation of this product can be rationalised by considering two factors. Firstly, there is a strong preference for the 2-substituent to adopt an axial disposition in the chair-like transition state, thus avoiding the pseudo  $A^{1,3}$  strain with the sulfonamide; this stereochemical preference in *N*-acyl and *N*-sulfonamido piperidines has been shown to be pronounced in a number of cases.<sup>9</sup> The second factor

Table 1 Cyclisations of 3a-e with HCl

| R., |      | HCI, C<br>-78 | CH₂C½, R<br>3°C → |                                  |                               |
|-----|------|---------------|-------------------|----------------------------------|-------------------------------|
|     | 3а-е |               |                   | 4а-е                             | 5а-е                          |
| Ent | ry   | Aldehyde      | R                 | <b>4</b> : 5 <sup><i>a</i></sup> | Yield (%) <sup><i>b</i></sup> |
| 1   |      | 3a            | Me                | 78:22                            | 70 (22)                       |
| 2   |      | 3b            | Bn                | 94 : 6                           | 70 (3)                        |
| 3   |      | 3c            | <sup>i</sup> Pr   | 80:20                            | 75 (19)                       |
| 4   |      | 3d            | <sup>t</sup> Bu   | 47:53                            | 42 (37)                       |
| 5   |      | 3e            | Ph                | 54:46                            | 53 (40)                       |

<sup>*a*</sup> Ratio determined by <sup>1</sup>H NMR of crude reaction mixtures. <sup>*b*</sup> Isolated yields of major (minor in parentheses) isomers following chromatography.



Fig. 1 ORTEP<sup>8</sup> representation of 4c; ellipsoids drawn at the 30% probability level.

is the kinetic preference for the ene component and the aldehyde to adopt a *cis* relationship in the cyclisation transition state, as observed in our earlier work.<sup>5</sup> This *cis* relationship is achieved with the aldehyde lying in an axial position in the TS, and the more bulky ene component lying equatorial, Fig. 2. More bulky 2substituents lead to a lowering of the diastereoselectivity as a result of increased 1,3-diaxial interactions with the aldehyde, forcing the aldehyde into an equatorial position to give **5**.



Fig. 2 Conformations leading to major and minor isomers in the Brønsted acid-catalysed reactions.

Turning to the Lewis acid-catalysed reaction, aldehydes 3a-e were treated with one equivalent of methyl aluminium dichloride, which had been found to be the optimal Lewis acid in our earlier studies.<sup>5</sup> As in the Brønsted acid-catalysed reactions, only two of the four possible diastereomers were observed (Table 2). The

 Table 2
 Cyclisations with methyl aluminium dichloride<sup>a</sup>

| Entry                           | Aldehyde                               | R                                       | Temperature                      | 4 : 5 <sup>b</sup>                             | Yield (%) <sup>c</sup>                                              |
|---------------------------------|----------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------------|---------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 3a<br>3a<br>3a<br>3b<br>3b<br>3c<br>2d | Me<br>Me<br>Bn<br>Bn<br><sup>i</sup> Pr | 23<br>40<br>60<br>23<br>40<br>40 | 12:88<br>7:93<br>4:96<br>10:90<br>5:95<br>2:98 | 76 (5)<br>60 (4)<br>71 (4)<br>61 (10)<br>64 (5)<br>82 (2)<br>88 (1) |
| 8                               | 3u<br>3e                               | Ph                                      | 60                               | 2:98                                           | 80 (2)                                                              |

<sup>*a*</sup> All reactions were performed using 1 equivalent of MeAlCl<sub>2</sub>. <sup>*b*</sup> Ratio determined by <sup>1</sup>H NMR or HPLC of crude reaction mixtures. <sup>*c*</sup> Isolated yields of major (minor) isomers following chromatography.

stereoselectivities ranged from good to excellent, with the major diastereomer identified as **5** from a combination of NOE data and <sup>1</sup>H NMR coupling constants. Further confirmation came from single crystal X-ray analysis of **5a**, Fig. 3.§



Fig. 3 ORTEP representation of 5a; ellipsoids drawn at 30% probability level.

Under the equilibrating Lewis acidic conditions the thermodynamic product is favoured, in which the 4- and 5-substituents are equatorial, and the 2-substituent is axial to avoid the pseudo  $A^{1,3}$ strain with the sulfonamide. The increased 1,3-diaxial interactions present in the TS leading to **4** results in the equilibration to the thermodynamic product (Fig. 4) being facile even at room temperature, but improved ratios were obtained on heating at 40 or 60 °C (see, for example, entries 1–3).



Fig. 4 Increased 1,3-diaxial interactions in Lewis acid-catalysed reaction favours the equatorial aldehyde.

Removal of the tosyl protecting group from a representative range piperidines was readily effected by stirring with sodium naphthalenide<sup>10</sup> for 5 min at -78 °C, Table 3. The crude yields of

Table 3 Tosyl removal



essentially pure piperidines were near quantitative in most cases, although compounds **4a** and **5a** in particular were difficult to handle and chromatograph due to their significant polarity and water solubility.

In summary, we have discovered a highly diastereoselective synthesis of 2,4,5-trisubstituted piperidines from simple acyclic precursors, which should have application to the synthesis of more complex molecules.

We thank the Engineering and Physical Sciences Research Council for the award of a studentship to C. A. M. C.

## Notes and references

† Brønsted acid-catalysed cyclisation procedure. Preparation of (2S\*, 4R\*, 5S\*)-2-methyl-5-iso-propenyl-1-(p-toluenesulfonyl)piperidin-4-ol 4a. Concentrated HCl (37%, 85 µL) was added to a solution of aldehyde 3a (0.102 g, 0.33 mmol) in dichloromethane (10 mL) at -78 °C. The solution was stirred at -78 °C overnight, after which it was quenched by addition of water (10 mL). The aqueous phase was then extracted with dichloromethane (4  $\times$  10 mL). The combined organic phases were washed with brine (10 mL), dried over MgSO4 and concentrated in vacuo to leave a colourless oil, which was purified by flash column chromatography (silica; ethyl acetate-hexane, 2 : 3,  $R_{\rm f} = 0.41$ ) to afford the piperidine **4a** (0.07 g, 70%) as a colourless thick oil.  $[a]_{D}^{27}$  -3.6 (c 0.5 in CHCl<sub>3</sub>); (v<sub>max</sub>(CHCl<sub>3</sub>)/cm<sup>-1</sup> 3525 (O–H), 2923 (C–H), 1644 (C=C aliphatic), 1598 (C=C aromatic), 1494 (C=C aromatic), 1451 (C=C aromatic), 1383 (C-H), 1336 (SO<sub>2</sub>), 1305 (C–H), 1153 (SO<sub>2</sub>), 1088 (C–O); δ<sub>H</sub>(300 MHz, CDCl<sub>3</sub>) 1.21 (3H, d, J 7.0), 1.63-1.67 (2H, envelope), 1.73 (3H, s), 1.80-1.82 (1H, m), 2.12 (1H, broad d, J 11.8), 2.40 (3H, s), 3.30 (1H, t, J 12.7), 3.62 (1H, dd, J 4.1, J 13.2), 3.99 (1H, d, J 2.6), 4.17-4.22 (1H, m), 4.69 (1H, s), 5.00 (1H, s), 7.27 (2H, d, J 8.1), 7.69 (2H, d, J 8.1);  $\delta_{\rm C}$ (75 MHz, CDCl<sub>3</sub>) 18.9, 21.5, 22.8, 35.7, 37.6, 46.5, 47.4, 64.6, 112.3, 127.0, 129.7, 138.4, 143.0, 144.1; *m/z* (ES<sup>+</sup>) 332 (100%, [M + Na]<sup>+</sup>) [HRMS Found: (M + Na)<sup>+</sup> 332.1297. C<sub>16</sub>H<sub>23</sub>NNaO<sub>3</sub>S requires M, 332.1296]. Lewis acidcatalysed cyclisation procedure. Preparation of (2R, 4S, 5S)-2-tert-butyl-5-iso-propenyl-1-(p-toluenesulfonyl)piperidin-4-ol 5d. Methyl aluminium dichloride (1 M solution in hexane, 480 µL, 0.48 mmol) was added to a solution of the aldehyde 3d (0.168 g, 0.48 mmol) in chloroform (20 mL). The solution was stirred overnight at 60 °C, after which it was quenched by addition of water (20 mL). The aqueous phase was then extracted with dichloromethane ( $4 \times 20$  mL). The combined organic phases were washed with brine (20 mL), dried over MgSO4 and concentrated in vacuo to leave a colourless oil, that was purified by flash column chromatography (silica; ethyl acetate-petroleum ether, 1 : 2,  $R_{\rm f} = 0.22$ ) to afford piperidine 5d as a colourless oil (0.147 g, 88%).  $[a]_{D}^{19}$  -6.0 (c 0.3 in CHCl<sub>3</sub>); (Found: C, 64.8; H, 8.1; N, 3.8. C<sub>19</sub>H<sub>29</sub>NO<sub>3</sub>S requires C, 64.9; H, 8.3; N, 4.0%); v<sub>max</sub>(CHCl<sub>3</sub>)/cm<sup>-1</sup> 3498 (O–H), 2964 (C–H), 1646 (C=C aliphatic), 1598 (C=C aromatic), 1401, 1367 (C–H), 1336 (SO<sub>2</sub>), 1084 (C–O);  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>) 1.05 (9H, s), 1.16–1.27 (1H, m), 1.30–1.38 (1H, m), 1.60 (3H, s), 1.71 (1H, s), 2.13 (1H, dd, J 4.4, J 14.0), 2.42 (3H, s), 3.04 (1H, dd, J 12.3, J 15.4), 3.79 (1H, dd, J 3.7, J 15.4), 3.91 (1H, dt, J 4.7, J 11.0), 3.99 (1H, d, J 8.1), 4.64 (1H, s), 4.89 (1H, s), 7.30 (2H, d, J 8.1), 7.73 (2H, d, J 8.1);  $\delta_{\rm C}(75~{\rm MHz},{\rm CDCl}_3)$  20.3, 21.6, 29.5, 31.7, 36.9, 46.2, 49.9, 61.4, 66.5, 113.9, 127.2, 129.9, 138.4, 142.6, 143.4; m/z (ES<sup>+</sup>) 374 (100%, [M + Na]<sup>+</sup>) [HRMS Found: (M + Na)<sup>+</sup> 374.1768. C<sub>19</sub>H<sub>29</sub>NNaO<sub>3</sub>S requires M, 374.1766]. Tosyl group removal procedure. Preparation of (2S, 4S, 5S)-2-benzyl-5-iso-propenylpiperidin-4-ol 7b. To a solution of 5b (0.099 g, 0.26 mmol) in tetrahydrofuran (1.5 mL) under nitrogen was added at

-78 °C a freshly prepared solution of sodium naphthalenide (1.2 mL of a 1 M solution in tetrahydrofuran, 4.6 eq). After 5 min the reaction was quenched with methanol (0.4 mL), warmed up to room temperature, diluted with water (5 mL) and acidified to pH 1 with aqueous HCl (2 M). The aqueous phase was washed with diethyl ether  $(3 \times 10 \text{ mL})$ , basified to pH 9 with aqueous NaOH (2 M) and extracted with ethyl acetate (4  $\times$  10 mL). The combined organic phases were washed with brine (10 mL), dried over MgSO4 and concentrated in vacuo to afford piperidine **7b** (0.052 g, 87%) as colourless crystals. Mp 119 °C;  $[a]_D^{23}$  -49 (c 0.98 in CHCl<sub>3</sub>); v<sub>max</sub>(CHCl<sub>3</sub>)/cm<sup>-1</sup> 3306 (O-H, N-H), 2917 (C-H), 1641 (C=C aliphatic), 1602 (C=C aromatic), 1493 (C=C aromatic), 1455 (C=C aromatic); 1090 (C–O);  $\delta_{\rm H}$ (300 MHz, CDCl<sub>3</sub>) 1.63 (1H, ddd, J 5.1, J 9.9, J 12.9), 1.79 (3H, s), 1.91 (1H, broad s), 1.97 (1H, dt, J 3.7, J 12.9), 2.07-2.15 (1H, m), 2.72 (1H, dd, J 6.4, J 13.4), 2.87-2.94 (3H, envelope), 3.33-3.40 (1H, m), 3.99 (1H, dt, J 4.1, J 9.4), 4.94 (1H, s), 4.98 (1H, s), 7.16–7.33 (5H, m); δ<sub>c</sub>(75 MHz, CDCl<sub>3</sub>) 21.2, 37.0, 38.8, 43.7, 53.4, 54.4, 66.4, 113.3, 126.4, 128.7, 129.1, 139.6, 144.4; m/z (ES<sup>+</sup>) 232 (65%, [M + H]<sup>+</sup>), 214.1 (100, [M - OH]<sup>+</sup>) [HRMS Found: (M + H)<sup>+</sup> 232.1700. C<sub>15</sub>H<sub>22</sub>NO requires M, 232.1701].

<sup>‡</sup> Crystal data for **4c**. C<sub>18</sub>H<sub>27</sub>NO<sub>3</sub>S, M = 337.47, monoclinic, a = 8.4757(1), b = 19.2080(3), c = 11.8021(2) Å, U = 1902.87(5) Å<sup>3</sup>, T = 296 K, space group  $P2_1$ , Z = 4,  $\mu$ (Cu K $\alpha$ ) = 1.617 mm<sup>-1</sup>, 5917 reflections measured, 5423 unique ( $R_{int} = 0.0374$ ) which were used in all calculations. The final  $wR(F_2)$  was 0.1035 (all data). Crystal data for **4a**. C<sub>16</sub>H<sub>23</sub>NO<sub>3</sub>S, M =309.41, monoclinic, a = 22.4722(3), b = 7.8727(1), c = 19.9610(2) Å, U = 3270.17(7) Å<sup>3</sup>, T = 296 K, space group C2/c, Z = 8,  $\mu$ (Cu K $\alpha$ ) = 1.837 mm<sup>-1</sup>, 2943 reflections measured, 2689 unique ( $R_{int} = 0.0392$ ) which were used in all calculations. The final  $wR(F_2)$  was 0.1150 (all data). CCDC reference number 288320. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b515547a

§ CCDC reference number 288321. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b515547a

- J. A. Findlay, in *The Alkaloids*, ed. A. Brossi, Academic Press: London, 1985, vol. 26, p. 89; A. R. Pinder, *Nat. Prod. Rep.*, 1986, **3**, 171; A. R. Pinder, *Nat. Prod. Rep.*, 1987, **4**, 527; A. R. Pinder, *Nat. Prod. Rep.*, 1989, **6**, 67; A. R. Pinder, *Nat. Prod. Rep.*, 1990, **7**, 447; A. R. Pinder, *Nat. Prod. Rep.*, 1992, **9**, 491; D. O'Hagan, *Nat. Prod. Rep.*, 2000, **17**, 435.
- 2 See for example: P. S. Watson, B. Jiang and B. Scott, *Org. Lett.*, 2000, 2, 3679 and references therein.
- 3 For recent reviews see: S. Laschat and T. Dickner, *Synthesis*, 2000, 1781; P. M. Weintraub, J. S. Sabol, J. M. Kane and D. R. Borcherding, *Tetrahedron*, 2003, **59**, 2953; M. G. P. Buffat, *Tetrahedron*, 2004, **60**, 1701.
- 4 For a review see: B. B. Snider, in *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 2, p. 527.
- 5 J. T. Williams, P. S. Bahia and J. S. Snaith, Org. Lett., 2002, 4, 3727.
- 6 M. Ishibashi, Y. Ohizumi, T. Sasaki, H. Nakamura, Y. Hirata and J. Kobayashi, J. Org. Chem., 1987, **52**, 450; J. Kobayashi, K. Naitoh, Y. Doi, K. Deki and M. Ishibashi, J. Org. Chem., 1995, **60**, 6941.
- 7 D. Ma and H. Sun, J. Org. Chem., 2000, 65, 6009; N. Langlois, Org. Lett., 2002, 4, 185; B. M. Trost and D. R. Fandrick, Org. Lett., 2005, 7, 823; F. A. Davis, J. Zhang, Y. Li, H. Xu and C. DeBrosse, J. Org. Chem., 2005, 70, 5413.
- 8 ORTEP-3 for Windows: L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
- 9 F. Johnson, *Chem. Rev.*, 1968, **68**, 375; L. A. Gandon, A. G. Russell and J. S. Snaith, *Org. Biomol. Chem.*, 2004, **2**, 2270.
- 10 J. C. Adelbrecht, D. Craig, B. W. Dymock and S. Thorimbert, SYNLETT, 2000, 467.